Mutations affecting a yeast mitochondrial inner membrane protein, pnt1p, block export of a mitochondrially synthesized fusion protein from the matrix.
نویسندگان
چکیده
The machinery that inserts mitochondrially encoded proteins into the inner membrane and translocates their hydrophilic domains through the membrane is poorly understood. We have developed a genetic screen for Saccharomyces cerevisiae mutants defective in this export process. The screen is based on the fact that the hydrophilic polypeptide Arg8(m)p is exported from the matrix if it is synthesized within mitochondria as a bifunctional Cox2p-Arg8(m)p fusion protein. Since export of Arg8(m)p causes an Arg(-) phenotype, defective mutants can be selected as Arg(+). Here we show that mutations in the nuclear gene PNT1 block the translocation of mitochondrially encoded fusion proteins across the inner membrane. Pnt1p is a mitochondrial integral inner membrane protein that appears to have two hydrophilic domains in the matrix, flanking a central hydrophobic hairpin-like anchor. While an S. cerevisiae pnt1 deletion mutant was more sensitive to H(2)O(2) than the wild type was, it was respiration competent and able to export wild-type Cox2p. However, deletion of the PNT1 orthologue from Kluyveromyces lactis, KlPNT1, caused a clear nonrespiratory phenotype, absence of cytochrome oxidase activity, and a defect in the assembly of KlCox2p that appears to be due to a block of C-tail export. Since PNT1 was previously described as a gene affecting resistance to the antibiotic pentamidine, our data support a mitochondrial target for this drug.
منابع مشابه
Cox18p is required for export of the mitochondrially encoded Saccharomyces cerevisiae Cox2p C-tail and interacts with Pnt1p and Mss2p in the inner membrane.
The amino- and carboxy-terminal domains of mitochondrially encoded cytochrome c oxidase subunit II (Cox2p) are translocated out of the matrix to the intermembrane space. We have carried out a genetic screen to identify components required to export the biosynthetic enzyme Arg8p, tethered to the Cox2p C terminus by a translational gene fusion inserted into mtDNA. We obtained multiple alleles of ...
متن کاملOxa1p, an essential component of the N-tail protein export machinery in mitochondria.
A number of nuclear encoded inner membrane proteins of mitochondria span the membrane in such a manner that their N termini are located in the intermembrane space. Many of these proteins attain this membrane orientation by undergoing an export step from the matrix across the inner membrane. This export process, which resembles bacterial N-tail export from energetic and topogenic signal requirem...
متن کاملMembrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p.
To study in vivo the export of mitochondrially synthesized protein from the matrix to the intermembrane space, we have fused a synthetic mitochondrial gene, ARG8m, to the Saccharomyces cerevisiae COX2 gene in mitochondrial DNA. The Arg8mp moiety was translocated through the inner membrane when fused to the Cox2p C terminus by a mechanism dependent on topogenic information at least partially con...
متن کاملThe amino terminus of the yeast F1-ATPase beta-subunit precursor functions as a mitochondrial import signal
The ATP2 gene of Saccharomyces cerevisiae codes for the cytoplasmically synthesized beta-subunit protein of the mitochondrial F1-ATPase. To define the amino acid sequence determinants necessary for the in vivo targeting and import of this protein into mitochondria, we have constructed gene fusions between the ATP2 gene and either the Escherichia coli lacZ gene or the S. cerevisiae SUC2 gene (wh...
متن کاملMitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p
Membrane fusion is required to establish the morphology and cellular distribution of the mitochondrial compartment. In Drosophila, mutations in the fuzzy onions (fzo) GTPase block a developmentally regulated mitochondrial fusion event during spermatogenesis. Here we report that the yeast orthologue of fuzzy onions, Fzo1p, plays a direct and conserved role in mitochondrial fusion. A conditional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 19 10 شماره
صفحات -
تاریخ انتشار 1999